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We introduce an efficient way to improve the accuracy of projected wave functions, widely used to study the
two-dimensional Hubbard model. Taking the clue from the backflow contribution, whose relevance has been
emphasized for various interacting systems on the continuum, we consider many-body correlations to construct
a suitable approximation for the ground state at intermediate and strong couplings. In particular, we study the
phase diagram of the frustrated t− t� Hubbard model on the square lattice and show that, thanks to backflow
correlations, an insulating and nonmagnetic phase can be stabilized at strong coupling and sufficiently large
frustrating ratio t� / t.
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I. INTRODUCTION

Recently, the interest in the role of frustrating interactions
in electronic systems has considerably increased, since in
this regime new exotic phases may appear. Many experi-
ments suggest the possibility to have disordered phases down
to very low temperatures �much smaller than what one would
expect from a mean-field approach� or even to zero tempera-
ture. Such phases are generically called spin liquids. In this
respect, the organic molecular materials �-�ET�2X, X being a
monovalent anion,1,2 represent an interesting example, since
they show a particularly rich phase diagram. In the conduct-
ing layers, ET molecules are strongly dimerized and form a
two-dimensional �2D� triangular lattice. Since the valence of
each ET dimer is +1, the conduction band is half filled. By
acting with an external pressure, it is possible to vary the
ratio between the on-site Coulomb repulsion and the band-
width, driving the system through a metal-insulator transi-
tion.

The minimal model to describe the physics of correlated
electrons is the Hubbard model

H = − �
i,j,�

tijci,�
† cj,� + H.c. + U�

i

ni,↑ni,↓, �1�

where ci,�
† �ci,�� creates �destroys� an electron with spin � on

site i, ni,�=ci,�
† ci,�, tij is the hopping amplitude that deter-

mines the bandwidth, and U is the on-site Coulomb repul-
sion. In this work, we focus our attention on the half-filled
case with N electrons on N sites �tilted by 45°�, and consider
the square lattice with both nearest- and next-nearest-
neighbor hoppings, denoted by t and t�, respectively. This
model represents the prototype for frustrated electronic
materials,3 and, recently, it has been widely studied by dif-
ferent numerical techniques, with contradictory outcomes.4–8

Here, we present the results for the zero-temperature phase
diagram, obtained by using projected wave functions.

II. VARIATIONAL APPROACH

Variational wave functions for the unfrustrated Hubbard
model, describing the antiferromagnetic phase, can be con-

structed by considering the ground state �AF� of a mean-field
Hamiltonian containing a band contribution and a magnetic
term HAF=�AF� je

iQ·RjSj
x, where Sj

x is the x component of the
spin operator S j = �Sj

x ,Sj
y ,Sj

z�. In order to have the correct
spin-spin correlations at large distance, we have to apply a
suitable long-range spin Jastrow factor, namely, ��AF�
=Js�AF�, with Js=exp�− 1

2�i,jui,jSi
zSj

z�, which governs spin
fluctuations orthogonal to the magnetic field �AF.9

On the other hand, spin-liquid �i.e., disordered� states can
be constructed by considering the ground state �BCS� of a
Bardeen-Cooper-Schrieffer �BCS� Hamiltonian and then ap-
plying to it the so-called Gutzwiller projector, �RVB�
=PG�BCS�, where PG=�i�1−gni,↑ni,↓� and g=1.10,11 In pure
spin models, where the U is infinite and charge fluctuations
are completely frozen, these kinds of states can be remark-
ably accurate and provide important predictions on the sta-
bilization of disordered spin-liquid ground states.12,13 How-
ever, whenever U / t is finite, the variational state must also
contain charge fluctuations. In this regard, the simplest gen-
eralization of the Gutzwiller projector with g�1, which al-
lows doubly occupied sites, is known to lead to a metallic
phase.14 In order to obtain a Mott insulator with no magnetic
order, it is necessary to consider a sufficiently long-range
Jastrow factor J=exp�− 1

2�i,jvi,jninj�, ni=��ni,� being the lo-
cal density.15 Nevertheless, the accuracy of the resulting
wave function ��BCS�=J�BCS� can be rather poor in 2D for
large on-site interactions,16 especially in the presence of frus-
tration �see below�. Therefore, other contributions beyond
the Jastrow factor must be included. In this respect, some
improvement on small clusters can be also obtained by per-
forming one Lanczos step, �1+�H���BCS�,9 or by consider-
ing exp�hK�PG�BCS� �where h and g are variational param-
eters and K is the hopping Hamiltonian�.17 However, the first
case is clearly not size consistent, while the second one be-
comes highly inefficient on large clusters.

III. BACKFLOW WAVE FUNCTION

The poor accuracy of ��BCS� is particularly evident in the
strong-coupling limit, where the super-exchange-energy
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scale is not correctly reproduced. Here, we want to modify
the single-particle orbitals18 in the same spirit of the back-
flow correlations, which have been proposed a long time ago
by Feynman and Cohen19 to obtain a quantitative description
of the roton excitation in liquid Helium. In our context, the
backflow term makes it possible to mimic the effect of the
virtual hopping, which leads to the super-exchange mecha-
nism. In the following, we will show that backflow correla-
tions will be particularly important for the BCS wave func-
tion, whereas they are less crucial in all magnetically ordered
phases, where already the mean-field state can satisfy the
single-occupancy �strong-coupling� constraint and contains
the virtual hopping processes, which are generated by the
kinetic term.

The backflow has been implemented within quantum
Monte Carlo calculations to study bulk liquid 3He,20,21 and
used to improve the description of the electron jellium both
in two and three dimensions.22,23 More recently, it has been
applied to metallic hydrogen.24 Originally, the backflow term
corresponds to consider fictitious coordinates of the electrons
r�

b , which depend on the positions of the other particles, so to
create a return flow of current,

r�
b = r� + �

	


�,	�x��r	 − r�� , �2�

where r� are the actual electronic positions and 
�,	�x� are
variational parameters depending in principle on all the elec-
tronic coordinates, namely, on the many-body configuration
�x�. The variational wave function is then constructed by
means of the orbitals calculated in the new positions, i.e.,
��r�

b�. Alternatively, the backflow can be introduced by con-
sidering a linear expansion of each single-particle orbital:

�k�r�
b� 	 �k

b�r�� 
 �k�r�� + �
	

c�,	�x��k�r	� , �3�

where c�,	�x� are suitable coefficients. Definition �3� is par-
ticularly useful in lattice models, where the coordinates of
the particles may assume only discrete values. In particular,
in the Hubbard model, the form of the new “orbitals” can be
fixed by considering the U� t limit, so to favor a recombi-
nation of neighboring charge fluctuations �i.e., empty and
doubly-occupied sites�,

�k
b�ri,�� 
 �k�ri,�� + 
�

j

tij�DiHj��k�r j,�� , �4�

where we used the notation that �k�ri,��= �0�ci,���k�, ��k� are
the eigenstates of the mean-field Hamiltonian, Di=ni,↑ni,↓,
and Hi=hi,↑hi,↓, with hi,�= �1−ni,��, so that Di and Hi are
nonzero only if the site i is doubly occupied or empty, re-
spectively; finally  and 
 are variational parameters �we can
assume that =1 if DiHj =0�. As a consequence, the determi-
nant part of the wave function already includes correlation
effects due to the presence of the many-body operator DiHj.
The previous definition of the backflow term preserves the
spin SU�2� symmetry. A further generalization of the new
“orbitals” can be made by taking all the possible virtual hop-
pings of the electrons:

�k
b�ri,�� 
 �k�ri,�� + 
1�

j

tij�DiHj��k�r j,��

+ 
2�
j

tij�ni,�hi,−�nj,−�hj,���k�r j,��

+ 
3�
j

tij�Dinj,−�hj,� + ni,�hi,−�Hj��k�r j,�� ,

�5�

where , 
1, 
2, and 
3 are variational parameters. The latter
two variational parameters are particularly important for the
metallic phase at small U / t, whereas they give only a slight
improvement of the variational wave function in the insula-
tor at strong coupling. For simplicity, we take the same pa-
rameters for up and down electrons. The definition Eq. �5�
may break the SU�2� symmetry, however, the optimized
wave function always has a very small value of the total spin
square, i.e., �S2��0.001 for 50 sites. All the parameters of
the wave function �contained in the mean-field Hamiltonian,
in the Jastrow term, and in the backflow term� can be opti-
mized by using the method of Ref. 13. Finally, the varia-
tional results can be compared to more accurate �and still
variational� ones obtained by Green’s function Monte Carlo
implemented with the so-called fixed-node �FN� appro-
ximation.25

IV. RESULTS

Let us start by considering the comparison of the varia-
tional results with the exact ones on the 18-site cluster at half
filling. In Fig. 1, we show the accuracy of the variational
BCS state �with and without backflow correlations� and the
overlap with the exact ground state for two values of the
frustrating ratio, i.e., t� / t=0 and 0.7. The backflow term is
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FIG. 1. �Color online� Results for 18 electrons on 18 sites as a
function of U / t. Upper panels: Accuracy of energy �E= �E0−Ev�,
Ev, and E0 being the variational and the exact values, respectively.
Lower panels: Overlap between the exact ground state and the
variational wave functions. The BCS state with long-range Jastrow
factor is denoted by blue triangles, the BCS state with backflow
correlations and Jastrow term by red circles. The results for �E
considering one Lanczos step upon the BCS state, i.e., �1
+�H����, are also shown �black squares�.
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able to highly improve the accuracy both for weak and
strong couplings. We also notice that backflow correlations
are more efficient than applying one Lanczos step, i.e.,
�1+�H���BCS�, which was used in previous calculations.9

The overlap between the exact ground state and the backflow
state remains very high even for large U, especially in the
frustrated regime.

Backflow correlations remain efficient also for larger sizes
and provide much lower energy than the Lanczos step wave
function, e.g., for 98 sites with U / t=20 and t� / t=0.7, the
energy per site with the backflow wave function is Eb / t
=−0.2352�1�, while the one with one Lanczos step is Els / t
=−0.2310�1� �for 18 sites they are Eb / t=−0.23741 and
Els / t=−0.23566�. The FN energy obtained with the backflow
state is EFN / t=−0.2395�1�, rather close to our estimation of
the exact value �based upon an extrapolation obtained with
zero and one Lanczos step� that is E / t�−0.246.

By increasing U / t, the variational energy extrapolates to
the one obtained by taking the fully projected state �RVB� in
the spin model. On the contrary, without using backflow
terms, the energy of the BCS state, even in the presence of a
fully optimized Jastrow factor, is few hundredths of J
=4t2 /U higher than the expected value �see Fig. 2�. More-
over, whenever frustration is large enough, backflow corre-
lations are also useful in the antiferromagnetic state ��AF�,
while for t�=0 they are not necessary to extrapolate to the
value of the spin model �see Fig. 2�.

In order to draw the ground-state phase diagram of the
t− t� Hubbard model, we consider three different wave func-
tions with backflow correlations: Two antiferromagnetic
states ��AF� with Q= �� ,�� and Q= �� ,0�, relevant for small
and large t� / t, and the nonmagnetic state ��BCS�. The varia-
tional phase diagram is reported in Fig. 3. The first important
outcome is that without backflow terms, the energies of the
spin-liquid wave function are always higher than those of the
magnetically ordered states for any value of frustration t� / t.

Instead, by inserting backflow correlations, a spin-liquid
phase can be stabilized at large enough U / t and frustration
�see also Fig. 2�. The small energy difference between the
pure variational and the FN energies demonstrates the accu-
racy of the backflow states, see Fig. 3. Notice that ��AF� and
��BCS� have different nodal surfaces, implying different FN
energies.

For small Coulomb repulsion and finite t� / t the static
density-density correlations N�q�= �n−qnq� �where nq is the
Fourier transform of the local density ni� have a linear be-
havior for �q�→0, typical of a conducting phase. A very
small superconducting parameter with dx2−y2 symmetry can
be stabilized, suggesting that long-range pairing correlations,
if any, are tiny. By increasing U / t, a metal-insulator transi-
tion is found and N�q� acquires a quadratic behavior in the
insulating phase, indicating a vanishing compressibility. This
behavior does not change when considering the FN ap-
proach, although the metal-insulator transition may be
slightly shifted. In Fig. 4, we show the variational results for
N�q� as a function of U / t for t� / t=0.75. The insulator just
above the transition is magnetically ordered and the varia-
tional wave function has a large �AF; the transition is likely
to be first order. By further increasing U / t, there is a second
transition to a disordered insulator. Indeed, for U / t�14, the
energy of the BCS wave function becomes lower than the
one of the antiferromagnetic state. In this respect, the key
ingredient to have such an insulating behavior is the presence
of a singular Jastrow term vq�1 /q2, which turns a BCS
superconductor into a Mott insulator.15 In contrast to previ-
ous investigations,4–8 for intermediate on-site couplings, our
calculations indicate the possibility to have a direct �first-
order� transition between two magnetic states �see Fig. 3�.

In order to verify the magnetic properties obtained within
the variational approach, we can consider the static spin-spin
correlations S�q�= �S−q

z Sq
z� over the FN ground state. Al-

though the FN approach may break the SU�2� spin symme-
try, favoring a spin alignment along the z axis �this is what
we find for small lattices by a direct comparison with exact
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FIG. 2. �Color online� Variational energies per site �in unit of
J=4t2 /U� for the BCS state with a Jastrow factor, with and without
backflow correlations, and 98 sites. The results for the wave func-
tion with antiferromagnetic order and no BCS pairing are also
shown. Arrows indicate the variational results obtained by applying
the full Gutzwiller projection to the mean-field states for the corre-
sponding Heisenberg models.
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results�, S�q� is particularly simple to evaluate within this
approach,25 and it gives important insights into the magnetic
properties of the ground state. In Fig. 4, we report the com-
parison between the variational and the FN results by con-
sidering the nonmagnetic state ��BCS�. Remarkably, in the
unfrustrated case, where antiferromagnetic order is expected,
the FN approach is able to increase spin-spin correlations at
q= �� ,��, even by considering the nonmagnetic wave func-
tion to fix the nodes. A finite value of the magnetization is
also plausible in the insulating region just above the metallic
phase at strong frustration �i.e., t� / t�0.75�, confirming the
variational calculations. On the contrary, by increasing the
electron correlation, the FN results change only slightly the
variational value of S�� ,��, indicating the stability of the
disordered state. In this case, a qualitatively correct represen-
tation of the ground state is obtained by the simple ��BCS�.

In conclusion, we have introduced a wave function that
highly improves the accuracy of the projected states used so
far. Our variational ansatz is particularly useful to describe
nonmagnetic phases, which can be stabilized in the strong-
coupling regime of the t− t� Hubbard model on the square
lattice.
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FIG. 4. �Color online� Upper panel: Variational �empty symbols�
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